一元二次方程
2 的方程,叫做 一元二次方程 . 2. 细心观察,归纳定义 3. 细心观察,概念辨析 辨别下列各式是否为一元二次方程。 关于 x 的方程 mx 2 3x + 2 = 0 ( m≠ 0) √ √ √ 4x 2 = 81 2 x 2 1 = 3y 3x x 1 = 5 x + 2 2x 2 + 3x 1 ( ) ( ) ( ) 一般地,任何一个关于 x 的一元二次方程,经过整理,都能化成如下形式:
0吨,3月上升到 7200吨 ,这两个月平均每个月增长的百分率是多少 ? 分析 :2月份比一月份增产 吨 . 2月份的产量是 吨 3月份比 2月份增产 吨 3月份的产量是 吨 5000(1+x) 5000x 5000(1+x)x 5000(1+x)2 解 :平均每个月增长的百分率为 x 列方程 5000(1+x)2 =7200 化简 (1+ x)2 = x1= x2= 检验 : x2=
3 1 3 1,4 4 4 4xx 1211,2xx 转化 配方 成式 开方 写解 例 1 解下列方程 0463331220181222xxxxxx)()()(.,31)1(13412342463:).3(222222原方程无实数解上式不成立解xxxxxxx( 2) 配方:等号一边成为完全平方式 ( 4)开平方
销售利润 元,降价后每台销售利润 元,降价前平均每天可售出 8台,降价后平均每天可售出 台, (4).通过列表理清数量关系 每天的销售量 /台 每 台的 销售利润 /元 每天总销售利润 /元 降价前 降价后 ( 5).题中冰箱的销售利润平均每天达到 5000元,此题的等量关系是 由此可得到的方程是 探究二:( 1)只通过题意,也不从探究一考虑,你能猜出降价的范围吗。 你能猜测出每台冰箱的
: “ 去 ,去 ,去 ,别来烦我 !”教师这样粗鲁地对待学生 ,就没有顾及学生的内心情感 ,更没有想学生之所想了 ,这样能与学生心心相印吗。 能换取学生的爱戴吗。 如果教师能站在学生的角度去考虑一下的话 ,那么就会体验到学生的无助。 我曾经碰到这样一个学生 ,由于这个学生经常违规乱纪 ,散漫成性 ,懒惰成习 ,惹是生非。 以往带班的老师历来不让他参加任何校内外活动。
( 1)如果关于 x 的方程 23 4 0x x m 有两个不相等的实数根,那么 m 的取值范围是_______。 (2) 已知关于 x 的方程 22 2 1 0m x x , ⅰ ) 当 m __________时,方程有有两个实数根; ⅱ ) 当 m __________时,方程无实数根; ⅲ ) 当 m __________时 ,方程只有一个实数根 . 2 二
次项系数; c是常数项. 例 1.将方程 3x( x1) =5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项. 分析 :一元二次方程的一般形式 是 ax2+bx+c=0( a≠ 0).因此,方程 3x( x1) =5(x+2)必须运用整式运算进行整理,包括去括号、移项等. 解:略 注意 :二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号 . 例
的两个实数根,则 12xx___ 15 已知关于 x的方程 x2( 2k1) x+k2=0 有两个不相等的实根,那么 k 的最大整数值是 16 若方程 2 3 1 0xx 的两根为 1x 、 2x ,则1211xx 的值为 17 甲、乙两个同学分别解一道一元二次方程,甲因把一次项系数看错了,而解得方程两根为 3 和 5,乙把常数项看错了,解得两根为 2+ 6 和 2 6
方程的两根和系数,你可以观察到什么。 生:两根和等于一次项系数的相反数 , 两根积等于常数项。 师:大家对于这个结论有什么看法吗。 生(可能):是不是还要看二次项系数非 1 的一元二次方程呢。 继续探索 :当二次项系数不在再为 1 时,上述猜想是否仍然成立。 自己想办法探索。 有 3 种可能: 部分同学自定义方程求根求和求积后产生猜想; 还有部分同学对仍保留在板书部分的求根公式着手进行两根和
有一个未知数 ” “ 我们又发现是按 X 的降幂 排列的 ” “ 我们发现等式的右边是 0” 这样老师尽力的把学生的各种观点板书,对于学生来说有一种成功感,特别是对于成绩相对比较差的学生,及时的表扬,调动各类学生积极参与教学过程,把课堂教学的主线定义为发展学生的创造性思维。 梳理归纳阶段。 通过上一步的讨论我们能否给出一个一元二次方程的定义及标准形式,通过上面的板书,请大家归纳一下,老师抛出第