有理数
那么 b是一个 _____数 . 9234-0 1 2 3 4 5 1 2 3 4 5 A C B E D 4. 口答 :下列各图表示的数轴是否正确 ?为什么 ? 1 2 3 A O 1 1 2 B C O 1 1 D O 1 1 2 2 E 100 O 100 200 F G 如何判断图形表示的数轴是否正确 ? O 2 1
9 8 7 6 5 –4 3 –2 1 0 1 2 3 4 5 6 7 8 9 5 ( 5) + 0 = 5 9 8 7 6 5 –4 3 –2 1 0 1 2 3 4 5 6 7 8 9 有理数加法法则 1. 同号两数相加 , 取相同的符号 , 并把绝对值相加。 2. 绝对值不相等的异号两数相加 ,取绝对值较大的加数的符号 ,并用较大的绝对值减去较小的绝对值 . 绝对值相等的异号两数相加得零。
同的 . 观察上面五对算式,对有理数的减法运算你能得出什么结论。 有理数减法法则 : 减去一个数 ,等于加上这个数的相反数 . a – b = a + (b) (1) 5020 = 比如 : 50+(20) =30. 50+(10) = 40. 50+ 0 =50. 50+10 =60. 50+20 =70. (5) 50(20)= (4) 50(10)= (3) 500 = (2) 5010
少克 ? 13 , 可使运算简便 . 课堂小结 : ? ? ,你有什么感受 ? 体会 : . 14 分析特征 强化理解 总结步骤 ( 4 ) + ( 8 ) = ( 4 + 8 )= 12 ↓ ↓ ↓ ↓ 同号 两数相加 取相同符号 两个加数的绝对值 相加 ( 9 ) + (+ 2) = ( 9 2) = 7 ↓ ↓ ↓ ↓ 异号 两数相加 取绝对值较大 两个加数的绝对值 的符号 由大的 减去
(0 2 1 5加法结合律 加法交换律 )( 2)35(242516 1.2算一算:(1)把正数和负数分别结合在一起相加 (2)把互为相反数的结合,能凑整的结合 (3)把同分母的数结合相加
a+b)+c=a+(b+c) 问题 5:为什么我们要学习加法的运算律呢。 例 1 计算: 16+(- 25) +24+(- 35) 问题 6:此题你是抓住数的什么特点使计算简化的。 依据是什么。 解:原式 =16+24+(- 25) +(- 35) =( 16+24) +[(- 25) +(- 35) ] =40+(- 60) =- 20 做下面的练习,并思考你是如何使计算简化的。
a+b)+c=a+(b+c) 问题 5:为什么我们要学习加法的运算律呢。 例 1 计算: 16+(- 25) +24+(- 35) 问题 6:此题你是抓住数的什么特点使计算简化的。 依据是什么。 解:原式 =16+24+(- 25) +(- 35) =( 16+24) +[(- 25) +(- 35) ] =40+(- 60) =- 20 做下面的练习,并思考你是如何使计算简化的。
个为负数,一个为零。 ,另一个为负数,并 且负数的绝对值大于正数的绝对值。 ,则下列正确的 是 ( )。 D C总结规律 写出法则 ,取 相同的符号,并把 绝对值相加。 ,绝 对值相等时和为零; 绝对值不相等时, 取绝对值大的符号, 并
2 1 5加法结合律 加法交换律 )( 2)35(242516 1.2算一算:(1)把正数和负数分别结合在一起相加 (2)把互为相反数的结合,能凑整的结合 (3)把同分母的数结合相加
)( - 1. 15 ) + ( + 1. 12 ) =- (1 .1 5 - ) =- 0. 03 . (3 )-27+- 213=-27+73 =-621+4921=-5521. (4 )- 534+ 725=-234-375=-1 1520-14820 =--3320=3320.